Broadband Access Many companies are closely examining WiMAX for "last mile" connectivity at high data rates. This could result in lower pricing for both home and business customers as competition lowers prices. In areas without pre-existing physical cable or telephone networks, WiMAX will, it appears, be a viable alternative for broadband access that has been economically unavailable. Prior to WiMax, many operators have been using proprietary fixed wireless technologies for broadband services. WiMAX subscriber units are available in both indoor and outdoor versions from several manufacturers. Self install indoor units are convenient, but the subscriber must be significantly closer to the WiMAX base station than with professionally installed units. As such, indoor installed units require a much higher infrastructure investment as well as operational cost (site lease, backhaul, maintenance) due to the high number of base stations required to cover a given area. Indoor units are comparable in size to a cable modem or DSL modem. Outdoor units allow for the subscriber to be much further away from the WiMAX base station, but usually require professional installation. Outdoor units are roughly the size of a textbook, and their installation is comparable to a residential satellite dish. Limitations A commonly held misconception is that WiMAX will deliver 70 Mbit/s, over 70 miles (112.6 kilometers). Each of these is true individually, given ideal circumstances, but they are not simultaneously true. In practice this means that in Line of sight environments you could deliver symmetrical speeds of 10Mbps at 10Km but in Urban Environments it is more likely that 30% of installtions may be Non Line of sight and therefore Users may only receive 10Mbps over 2Km. WiMAX has some similarities to DSL in this respect, where one can either have high bandwidth or long reach, but not both simultaneously. The other feature to consider with WiMAX is that available bandwidth is shared between users in a given radio sector, so if there are many active users in a single sector, each will get reduced bandwidth. However, unlike SDSL where contention is very noticeable at a 5:1 ratio if you are sharing your connection with a large media firm for example WiMax does not have this problem. Typically each cell has a 100Mbps backhaul so there is is no contention here. On the radio side in practice many users will have a range of 2,4,6,8 or 10Mbps services and the bandwidth can be shared. If the network becomes busy the business model is more like GSM or UMTS than DSL in that it is easy to predict the capacity requirements as you sign more customers and additional radio cards can be added on the same sector to increase the capacity. Mobile applications Some cellular companies are evaluating WiMAX as a means of increasing bandwidth for a variety of data-intensive applications; indeed, Sprint Nextel has announced in mid-2006 that it will be investing about US$ 3 billion in a WiMAX technology buildout over the next few years. In line with these possible applications is the technology's ability to serve as a high bandwidth "backhaul" for Internet or cellular phone traffic from remote areas back to an internet backbone. Although the cost-effectiveness of WiMAX in a remote application will be higher, it is not limited to such applications, and may be an answer to reducing the cost of T1/E1 backhaul as well. Given the limited wired infrastructure in some developing countries, the costs to install a WiMAX station in conjunction with an existing cellular tower or even as a solitary hub are likely to be small in comparison to developing a wired solution. Areas of low population density and flat terrain are particularly suited to WiMAX and its range. For countries that have skipped wired infrastructure as a result of inhibitive costs and unsympathetic geography, WiMAX can enhance wireless infrastructure in an inexpensive, decentralized, deployment-friendly and effective manner. Technical info WiMAX is a term coined to describe standard, interoperable implementations of IEEE 802.16 wireless networks, in a rather similar way to Wi-Fi being interoperable implementations of the IEEE 802.11 Wireless LAN standard. However, WiMAX is very different from Wi-Fi in the way it works. MAC layer In Wi-Fi the media access controller (MAC) uses contention access — all subscriber stations that wish to pass data through a wireless access point (AP) are competing for the AP's attention on a random interrupt basis. This can cause subscriber stations distant from the AP to be repeatedly interrupted by closer stations, greatly reducing their throughput. This makes services such as Voice over IP (VoIP) or IPTV, which depend on an essentially constant Quality of Service (QoS) depending on data rate and interruptibility, difficult to maintain for more than a few simultaneous users. In contrast, the 802.16 MAC uses a scheduling algorithm for which the subscriber station need compete once (for initial entry into the network). After that it is allocated an access slot by the base station. The time slot can enlarge and contract, but remains assigned to the subscriber station which means that other subscribers cannot use it. The 802.16 scheduling algorithm is stable under overload and over-subscription (unlike 802.11). It can also be more bandwidth efficient. The scheduling algorithm also allows the base station to control QoS parameters by balancing the time-slot assignments among the application needs of the subscriber stations. Physical layer The original WiMAX standard (IEEE 802.16) specified WiMAX for the 10 to 66 GHz range. 802.16a, updated in 2004 to 802.16-2004 (also known as 802.16d), added specification for the 2 to 11 GHz range. 802.16d (also known as "fixed WiMAX") was updated to 802.16e in 2005 (known as "mobile WiMAX"). and uses scalable orthogonal frequency-division multiplexing (OFDM) as opposed to the OFDM version with 256 sub-carriers used in 802.16d. This brings potential benefits in terms of coverage, self installation, power consumption, frequency re-use and bandwidth efficiency. 802.16e also adds a capability for full mobility support. The WiMAX certification allows vendors with 802.16d products to sell their equipment as WiMAX certified, thus ensuring a level of interoperability with other certified products, as long as they fit the same profile. Most interest will probably be in the 802.16d and .16e standards, since the lower frequencies suffer less from inherent signal attenuation and therefore give improved range and in-building penetration. Already today, a number of networks throughout the World are in commercial operation using certified WiMAX equipment compliant with the 802.16d standard. Advantages over Wi-Fi Þ The WiMAX specification provides symmetrical bandwidth over many kilometers and range with stronger encryption (TDES or AES) and typically less interference. Wi-Fi is short range (approximately 10's of metres) has WEP or WPP encryption and suffers from interference as in metropolitan areas where there are many users. Þ Wi-Fi Hotspots are typically backhauled over ADSL in most coffee shops therefore Wi-Fi access is typically highly contended and has poor upload speeds between the router and the internet. Þ It provides connectivity between network endpoints without the need for direct line of sight in favorable circumstances. Þ The non-line-of-sight propagation (NLOS) performance requires the .16d or .16e revisions, since the lower frequencies are needed. It relies upon multi-path signals, somewhat in the manner of 802.11n. Spectrum Allocations issues The 802.16 specification applies across a wide swath of the RF spectrum. However, specification is not the same as permission to use. There is no uniform global licensed spectrum for WiMAX. In the US, the biggest segment available is around 2.5 GHz, and is already assigned, primarily to Sprint Nextel and Clearwire. Elsewhere in the world, the most likely bands used will be around 3.5 GHz, 2.3/2.5 GHz, or 5 GHz, with 2.3/2.5 GHz probably being most important in Asia. In addition, several companies have announced plans to utilize the WiMAX standard in the 1.7/2.1 GHz spectrum band recently auctioned by the FCC, for deployment of "Advanced Wireless Services" (AWS). There is some prospect in the U. S. that some of a 700 MHz band might be made available for WiMAX use, but it is currently assigned to analog TV and awaits the complete rollout of digital TV before it can become available, likely by 2009. In any case, there will be other uses suggested for that spectrum if and when it actually becomes open. It seems likely that there will be several variants of 802.16, depending on local regulatory conditions and thus on which spectrum is used, even if everything but the underlying radio frequencies is the same. WiMAX equipment will not, therefore, be as portable as it might have been - perhaps even less so than WiFi, whose assigned channels in unlicensed spectrum vary little from jurisdiction to jurisdiction. The actual radio bandwidth of spectrum allocations is also likely to vary. Typical allocations are likely to provide channels of 5 MHz or 7 MHz. In principle the larger the bandwidth allocation of the spectrum, the higher the bandwidth that WiMAX can support for user traffic. Standards The 802.16 standard IEEE Std 802.16e-2005, approved in December 2005 follows on from IEEE Std 802.16-2004, which replaced IEEE Standards 802.16-2001, 802.16c-2002, and 802.16a-2003. IEEE Std 802.16-2004 (802.16d) addresses only fixed systems. 802.16e adds mobility components to the standard. IEEE 802.16e IEEE 802.16e-2005 (formerly named, but still best known as, 802.16e or Mobile WiMAX) provides an improvement on the modulation schemes stipulated in the original (fixed) WiMAX standard. It allows for fixed wireless and mobile Non Line of Sight (NLOS) applications primarily by enhancing the OFDMA (Orthogonal Frequency Division Multiple Access). SOFDMA (Scalable OFDMA) improves upon OFDM256 for NLOS applications by ü Improving NLOS coverage by utilizing advanced antenna diversity schemes, and hybrid-Automatic Retransmission Request (hARQ) ü Increasing system gain by use of denser sub-channelization, thereby improving indoor penetration ü Introducing high-performance coding techniques such as Turbo Coding and Low-Density Parity Check (LDPC), enhancing security and NLOS performance ü Introducing downlink sub-channelization, allowing administrators to trade coverage for capacity or vice versa ü Improving coverage by introducing Adaptive Antenna Systems (AAS) and Multiple Input Multiple Output (MIMO) technology ü Eliminating channel bandwidth dependencies on sub-carrier spacing, allowing for equal performance under any RF channel spacing (1.25-14 MHz) ü Enhanced Fast Fourier transform (FFT) algorithm can tolerate larger delay spreads, increasing resistance to multipath interference On the other hand, 802.16-2004 (fixed WiMAX) offers the benefit of available commercial products and implementations optimized for fixed access. Fixed WiMAX is a popular standard among alternative service providers and operators in developing areas due to its low cost of deployment and advanced performance in a fixed environment. Fixed WiMax is also seen as a potential standard for backhaul of wireless base stations such as cellular, WiFi or even mobile WiMAX. SOFDMA and OFDMA256 are not compatible so most equipment will have to be replaced. However, some manufacturers are planning to provide a migration path for older equipment to SOFDMA compatibility which would ease the transition for those networks which have already made the OFDMA256 investment. This effects a relatively small number users and operators. HIPERMAN The equivalent of 802.16 in Europe is HIPERMAN. The WiMAX Forum is working to ensure that 802.16 and HIPERMAN inter-operate seamlessly. WiBro Korea's electronics and telecommunication industry spearheaded by Samsung Electronics and ETRI has developed its own standard, WiBro. In late 2004, Intel and LG Electronics have agreed on interoperability between WiBro and WiMAX. WiBro has South Korean government support with the requirement for each carrier to spend over US$1 billion for deployments. The Koreans sought to develop WiBro as a regional and potentially international alternative to 3.5G or 4G cellular systems. But given the lack of momentum as a standard, WiBro has joined WiMAX and agreed to harmonize with the similar OFDMA 802.16e version of the standard. What makes WiBro roll-outs a good 'test case' for the overall WiMAX effort is that it is mobile, well thought out for delivery of wireless broadband services, and the fact that the deployment is taking place in a highly sophisticated, broadband-saturated market. WiBro will go up against 3G and very high bandwidth wire-line services rather than as gap-filler or rural under-served market deployments as is often exampled as the 'best fit' markets for WiMAX. Associations WiMAX Forum The WiMAX Forum is "the exclusive organization dedicated to certifying the interoperability of BWA products, the WiMAX Forum defines and conducts conformance and interoperability testing to ensure that different vendor systems work seamlessly with one another." Those that pass conformance and interoperability testing achieve the "WiMAX Forum Certified" designation and display this mark on their products and marketing materials. Vendors claiming their equipment is "WiMAX-ready", "WiMAX-compliant", or "pre-WiMAX" are not WiMAX Forum Certified, according to the Forum. WiMAX Spectrum Owners Alliance - WiSOA WiSOA is the first global organization composed exclusively of owners of WiMAX spectrum. WiSOA is focused on the regulation, commercialization, and deployment of WiMAX spectrum in the 2.3–2.5 GHz and the 3.4–3.5 GHz ranges. WiSOA are dedicated to educating and informing its members, industry representatives and government regulators of the importance of WiMAX spectrum, its use, and the potential for WiMAX to revolutionize broadband. Competing technologies WiMAX is a framework for wireless development based on a forward-looking core set of technologies. More recently 3GPP cellular's 4G, 802.22 Cognitive Radio RAN (Rural Area Network), and 802.20, the High Speed Mobile Broadband Wireless Access (MBWA) Working Group, have shifted toward use of similar constructs of multi-channel scalable OFDM, HARQ, FEC, MIMO-AAS and other complementary technologies as are part of WiMAX. Within the marketplace, WiMAX's main competition comes from widely deployed wireless systems with overlapping functionality such as UMTS and CDMA2000, as well as a number of Internet oriented systems such as HIPERMAN and WiBro. Cellular Phone Systems 3G and 4G Both of the two major 3G systems, CDMA2000 and UMTS, compete with WiMAX. Both offer DSL-class Internet access in addition to phone service. UMTS has also been enhanced to compete directly with WiMAX in the form of UMTS-TDD, which can use WiMAX oriented spectrum and provides a more consistent, if lower bandwidth at peak, user experience than WiMAX. Moving forward, similar air interface technologies to those used by WiMAX are being considered for the 4G evolution of UMTS. 3G cellular phone systems usually benefit from already having entrenched infrastructure, being upgrades from earlier systems. Users can usually fall back to older systems when they move out of range of upgraded equipment, often relatively seamlessly. In addition to obvious competition, in some areas of the world the wide availability of UMTS and a general desire for standardization has meant spectrum has not been allocated for WiMAX: in July 2005, the EU-wide frequency allocation for WiMAX was blocked by France and Finland, where manufacturers have invested heavily in UMTS technology. In September 2006, frequency bidding in Malaysia was stopped and any allocation of WiMAX has been suspended indefinitely. The ITU has, however, advised agnostic use of spectrum for IMT-2000 and is considering WiMAX as an alternative specified use for IMT-2000 and IMT-Advanced. Growing interest among operators is building for 'technology agnostic' allocation of spectrum in which operators are free to make best use of their large investments and insure against regulated obsolescence. Internet Oriented Systems Early WMAN standards, the European standard HIPERMAN and Korean standard WiBro have been harmonized as part of WiMAX and are no longer seen as competition but as complimentary. All networks now being deployed in Korea, the home of the Wibro standard, are now WiMAX. As a short-range mobile internet solution, such as in cafes and at transportation hubs like airports, the popular WiFi 802.11g system is widely deployed, and provides enough coverage for some users to feel subscription to a WiMAX service is unnecessary. Comparison Comparison of Mobile Internet Access methods | Standard | Family | Primary Use | Radio Tech | Downlink (Mbps) | Uplink (Mbps) | Notes | 802.16e | WiMAX | Mobile Internet | SOFDMA | 70 | 70 | Quoted speeds only achievable at short range more practically 10Mbps at 10Km. | HIPERMAN | HIPERMAN | Mobile Internet | OFDM | 56.9 | 56.9 | | WiBro | WiBro | Mobile Internet | OFDM | 50 | 50 | Short range (<5km) | UMTS W-CDMA HSDPA+HSUPA | UMTS/3GSM | Mobile phone | CDMA/FDD | .384 3.6 | .384 5.76 | HSDPA downlink widely deployed. Roadmap shows HSDPA up to 28.8Mbps from the basestation . Users can expect downloads of 400 to 600Kbps but around 100Kbps uplink speeds. | UMTS-TDD | UMTS/3GSM | Mobile Internet | CDMA/TDD | 16 | 16 | Reported speeds according to IPWireless | LTE UTMS | UMTS/4GSM | General 4G | OFDM/MIMO (HSOPA) | >100 | >50 | Still in development | 1xRTT | CDMA2000 | Mobile phone | CDMA | 0.144 | 0.144 | Obsoleted by EV-DO | EV-DO 1x Rev. 0 Rev. A | CDMA2000 | Mobile phone | CDMA/FDD | 2.45 3.1 | 0.15 1.8 | Proposed Rev. B improves downlink to nearly 5Mbps. | Notes: All speeds are theoretical maximums and will vary by a number of factors, including the distance from the tower and the ground speed (i.e. communications on a train may be slower than when standing still.) Usually the bandwidth is shared between several terminals.
|